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Abstract Two new rhodamine derivatives (L1 and L2) were
synthesized, characterized and their ion recognition property
has been investigated. Both of the ionophores exhibit colori-
metric and fluorogenic response for Hg2+ and Cr3+ ions among
large number of alkali, alkaline earth and transition metal ions
tested in acetonitrile. Detail studies on determination of bind-
ing constant, binding mode, reversibility of binding, lower
detection limit have been carried out. Detection of metal ions
in aqueousmedia has also been demonstrated by preparation of
simple, convenient and disposable test paper sensors with two
approaches viz. filter paper and membrane filter loaded with
these ionophores. Both of these methods responded sharply to
both the metal ions (Hg2+ and Cr3+) in aqueous solution, de-
tectable by bared-eye. For better sensing at low concentration
of metal ions, reprecipitation followed by filtration enrichment
of ligands on membrane filter was employed.
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Introduction

The Hg2+ ion is considered as highly dangerous to the man-
kind since its bioaccumulation causes various disorders [1–4].

Cr3+ ion is essential for good health in moderate intake; how-
ever it is toxic at high concentration [5–7]. Ion recognition,
particularly of toxic heavy metal ions is a matter of intense
interest as it has implications in the fields like environment,
medicine, biology etc. [8–10]. Chemosensors for on-site se-
lective and sensitive detection of these metal ions in aqueous
phase is always endeavored. Sophisticated analytical tech-
niques such as atomic absorption spectroscopy, inductively-
coupled plasma-optical emission spectroscopy, inductively-
coupled plasma-mass spectroscopy, instrumental neutron
activation analysis and x-ray fluorescence spectroscopy
are available for quantitative analysis of these metal ions
found in various sources such as geological, food, biolog-
ical and industrial effluent. However, these require tedious
sample preparation procedures at one hand while on the
other hand these instruments are not only costly but also
require high maintenance cost and skilled person to
operate.

Electronic Supplementary Information (ESI) available:
Fig. S1-S26.

With the aid of suitable molecular probes, metal ions
have been sensed in organic medium, mixed organic
solvents, aqueous-organic medium with the help of in-
struments like spectrophotometer, spectrofluorimeter etc.
[11–21]. However, it is highly relevant to sense them in
aqueous medium.

There are reports in the literature for specific sensing of
metal ions like Hg2+ and Cr3+ in aqueous solution/living cell
with the aid of analytical instruments like spectrophotometer,
spectrofluorimeter, confocal microscope etc. [22–29]. The po-
tent toxicity of Hg2+ and Cr3+ drive the need of simple, con-
venient and bare-eye visualization method of their detection in
aqueous solution so that a common man can conduct testing.
Progress has been made towards the detection of these two
metal ions by test paper sensing with the detection upto
10 ppm concentration in water [30]. However, in this direction
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there is a desire to develop system, which can detect at lower
level in aqueous solution. Fixation of the colorimetric and
fluorometric sensors on some solid substrates likemembranes,
Langmuir-Blodgett films, covalent immobilization/anchoring
with polymers and alternate deposition of oppositely charges
polyelectrolyte’s have been attempted for sensing of metal
ions [31–33]. However, uniformity of signaling reagent over
entire surface, control over its concentration, complicated syn-
thetic procedures and less sensitivity are some of the limiting
factors with these methods. To obtain aqueous dispersion/
suspensions of dyes with small particles, a reprecipitation
method was reported [34, 35]. Reprecipitation followed by
filtration enrichment of signaling reagent was used for heavy
metal detection in the literature [36].

In this study, we have synthesized and characterized two
new rhodamine-6G derivatives, L1 and L2. The sensing prop-
erty of these two ionophores was tested with a series of alkali,
alkaline earth and transition metal ions in acetonitrile. Both of
these ionophores exhibited high selectivity towards Hg2+ and
Cr3+. Sensing of these two metal ions in aqueous media was
also carried out with the aid of filter paper and membrane.
Filter paper testing is quite simple, disposable and sensing
using membrane involves reprecipitation and filtration enrich-
ment of ionophores and by this method better lower detection
limit for the metal ions is achieved.

Experimental section

Materials

Perchlorate salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Co2+,
Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+, rhodamine 6G,
ethylenediamine, 9-anthracenecarboxaldehyde, biphenyl-4-
carboxaldehyde, were purchased from Aldrich and used as
received. Analytical grade ethanol and acetonitrile were pur-
chased from S.D. fine chemicals and used without purifica-
tion. WhatmanTM filter paper and cellulose acetate membrane
filter were used to prepare test paper strip for sensing purpose.

Instrumentation

1H and 13C NMR spectra were recorded on a Bruker 200 MHz
(DPX-200) and 500 MHz (Avance II) FT-NMR spectrometers,
using tetramethylsilane as an internal reference in CDCl3 sol-
vent. 1H NMR titration was carried out at 500 MHz in mixed
solvent medium (CD3CN and CDCl3). ESI-MS was recorded
on a LC-MS instrument, LC (Waters), MS (Micromass).
MALDI TOF/TOF analyzer (AB MDS Sciex, 4800 plus) was
used to record mass spectra of the complexes. The absorption
spectra were recorded with a Varian (carry 500) UV–vis-NIR
spectrophotometer. Fluorescence spectra were recorded with
Edinburgh (F900) spectrophotometer. Elemental analysis was

done with Elementar (Vario Micro Cube) elemental analyzer.
Atomic Force Microscope (NT-MDT, Ntegra Aura) was used
to record images of ligand-incorporated membrane filters.

Synthesis

The intermediate compound 1 was synthesized following the
literature method, as shown in Scheme 1 [37, 38]. In a typical
procedure, rhodamine 6G (1.92 g, 4 mM) dissolved in hot eth-
anol and ethylenediamine (1.34 mL, 20 mM) was added into it.
The reactionmixture was refluxed for 8 h till the fluorescence of
the solution was disappeared. The precipitate, which was sepa-
rated during reflux, was collected and washed with 20 mL of
cold ethanol and then recrystallized from acetonitrile. Yield:
70 %. The ionophores L1 and L2 were synthesized from com-
pound 1 following a modified published procedure used for
other compound. In a typical procedure, compound 1
(600 mg, 1.3 mM) was dissolved in hot ethanol (40 mL) and
then 9-anthracenecarboxaldehyde (310mg, 1.5 mM)was added
into it. The reaction was allowed to reflux for about 12 h. On
cooling to room temperature, the precipitate separated was fil-
tered off and washed with ethanol, which gave L1 as dull green
compound, yield 73 %. Similarly, biphenyl-4-carboxaldehyde
(273 mg, 1.5 mM) was treated with 1 (500 mg, 1.1 mM) to
obtain L2 as off-white compound, yield 77 %.

Characterization data for 1: 1H NMR (200MHz, CDCl3,
δ (ppm)): δ 7.92 (d, 1H), 7.46 (t, 2H), 7.05 (d, 1H), 6.34 (s,

Scheme 1 Synthesis of L1 and L2
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2H), 6.22 (s, 2H), 3.51 (t, 2H), 3.20 (t, 4H), 2.39 (t, 2H), 1.90
(s, 6H), 1.32 (t, 6H). 13C NMR (500MHz, CDCl3, δ (ppm)): δ
168.73, 153.50, 151.65, 147.44, 132.52, 131.07, 128.24,
128.07, 123.82, 122.79, 118.02, 105.95, 96.49, 65.11, 43.60,
40.71, 38.33, 16.69, 14.70. ESI-MS (m/z): found 457.20, cal-
culated for [M+H]+ 457.58. Elemental analysis: C, 73.61; H,
7.28; N, 11.92 %, calculated values for C28H32N4O2: C,
73.68; H, 7.00; N, 12.26 %.

Characterization data for L1:
1H NMR (200 MHz,

CDCl3, δ (ppm)): δ 8.94 (s, 1H), 8.44 (d, 1H), 8.40 (d, 3H),
7.99 (d, 3H), 7.48 (m, 6H), 7.08 (d, 1H), 6.35 (s, 2H), 6.24 (s,
2H), 3.69 (s, 4H), 3.36 (b, 2H), 3.18 (b, 4H), 1.67 (s, 4H), 1.56
(s, 6H), 1.27 (t, 6H). 13C NMR (500MHz, CDCl3, δ (ppm)): δ
167.94, 161.15, 153.16, 151.25, 146.8, 131.92, 130.73,
130.60, 129.33, 128.67, 128.10, 127.50, 127.34, 126.02,
124.79, 124.62, 124.44, 123.30, 122.22, 117.34, 105.69,
96.02, 64.53, 60.07, 40.89, 37.75, 15.91, 14.13. ESI-MS (m/
z): found 645.47, calculated for [M+H]+ is 645.82. Elemental
analysis: C, 80.20; H, 6.36; N, 8.65 %, calculated values for
C43H40N4O2: C, 80.13; H, 6.24; N, 8.69 %.

Characterization data for L2:
1H NMR (200 MHz,

CDCl3, δ (ppm)): δ 8.03 (s, 1H), 7.94 (t, 1H), 7.62 (t, 5H),
7.4 (m, 4H), 7.03 (b, 1H), 6.35(s, 2H), 6.24 (s, 2H), 3.44 (s,
4H), 3.21(b, 4H), 1.86 (s, 4H), 1.58 (s, 6H), 1.32 (t, 6H). 13C
NMR: (500 MHz, CDCl3, δ (ppm)):168.45, 161.96, 153.90,
151.75, 147.38, 143.12, 140.42, 135.09, 132.44, 131.06,
130.28, 129.02, 128.81, 128.57, 128.52, 128.34, 128.15,
127.97, 127.86, 127.67, 127.37, 127.10, 123.81, 122.78,
117.87, 106.10, 96.65, 65.08, 59.09, 41.29, 38.37, 16.69,
14.76. ES-MS (m/z): found 621.19, calculated for [M+H]+

621.79. Elemental analysis: C, 78.70; H, 6.42; N, 8.63 %.
Calculated for C41H40N4O2: C, 79.35; H, 6.45; N, 9.03 %.

Detection of metal ion: Stock solutions of L1 and L2 (2×
10−5 M) and perchlorate salts (2×10−4M) of various metal
ions (Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Co2+, Ni2+, Cu2+,
Zn2+, Cd2+, Hg2+, and Pb2+) were prepared in acetonitrile.
Then, 2 mL solution of each metal perchlorate solution was
added into 2 mL solution of each ionophore (L1 and L2) and
the absorption and emission spectra of the resulting solutions
were recorded. For the emission titration study, the spectra
were recorded as a function of progressive addition of the
standard solutions of strongly interacting metal ions (Cr3+

and Hg2+) while maintaining the constant concentration of
ionophore (2×10−5 M).

Results and discussion

Characterization of L1 and L2

Characterization data for 1, L1 and L2 are given in the
BExperimental section^. The 1H, 13C NMR and mass spectra
for 1 are submitted as ESI (Figs. S1-S3) and the data are

similar to that reported previously [37], confirming its forma-
tion. The elemental analysis andmass data forL1 andL2 are in
excellent agreement with the proposed composition. Themass
spectra of L1 and L2 are submitted as ESI (Figs. S4 and S5).
The 1H and 13C NMR spectra forL1 andL2 are also submitted
as ESI (Figs. S6-S9). In the 1H NMR spectra, the peak at δ
2.39 for 1, which is due to –NH2 protons, could not be ob-
served in the spectra of L1 and L2, on the other hand new
peaks at δ 8.94 for L1 and δ 8.03 for L2 were noted, and they
can be assigned to the proton of azomethine group (−CH=N-).
The observation therefore suggests the formation of Schiff
bases, L1 and L2. In the aromatic region of the 1H NMR
spectra of L1 and L2, there are some additional peaks at posi-
tions expected from anthracene and biphenyl moieties, respec-
tively, which suggest the presence of these moieties in
the new ligand (L1 and L2). The

13C NMR data, given
in the BExperimental section^, is consistent to the struc-
tures of L1 and L2. The signals at δ 161.15 and 161.96 for L1

and L2, respectively are due to the carbon atom of azomethine
moiety, which further confirmed the formation of Schiff bases
L1 and L2.

Sensing of metal ions by absorption spectroscopy

The interaction of metal ions with the ionophores was follow-
ed by UV–vis spectral change. A detail of experimental pro-
cedure is given in the BExperimental section^ and the spectral
changes are shown in Fig. 1. It may be noted that upon addi-
tion of 10 equivalents of metal ions, a strong band appears at
527 nm (Fig. 1) for both Cr3+ and Hg2+, this band was absent
for the solution of L1 and L2. The other metal ions tested (Li+,
Na+, K+, Mg2+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+ Cd2+, and Pb2+)
did not exhibit formation of any new band even after addition
of 100 molar equivalent of metal ions. This observation sug-
gests binding of these two metal ions over the others tested.
The appearance of the absorption band at 527 nm indicates the
delocalization in the xanthane moiety of rhodamine due to
spirolactam ring opening induced by strong binding of the
metal ions [38]. The colour change noted after 10 min upon
addition of all the metal ions tested were photographed and
shown in Fig. 2. It may be noted that the ionophore L1 shows
distinct reddish-pink color with both of these metal ions
whereas L2 shows pink color with the same metal ions
(Fig. 2) and the colour is detectable by bared-eye in both
the cases. The stoichiometries of the complexes formed
were determined by Job’s plot (Figs. S10–S13) and the data
show 1:1 complex formation for both the ionophores with
both the metal ions.

Mass spectroscopy

The mass spectra of the ionophores after addition of Hg2+ and
Cr3+ were recorded and the spectra are submitted as ESI
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(Figs. S14-S17). ForL1, the observedm/z values for Hg
2+ and

Cr3+ are 846.27 and 711.93, respectively, which correspond to
the compositions [L1

−1+Hg2+]+ (calculated: 844.41) and
[L1

−1+Cr3++H2O-H
+]+ (calculated: 713.82). For L2, the ob-

served m/z values 821.42, 839.45, 855.44, 894.47 and 911.50
for Hg2+ correspond to the compositions [L2

−1+Hg2++
XH2O]+ (calculated values are 820.38 (X=0), 838.39
(X=1), 856.40 (X=2), 892.44 (X=4) and 910.45 (X=5).

For Cr3+, the observed m/z value is 825.47, which matched
well with the composition [L2

−1+Cr3++ClO4
−+3H2O]

+

(calculated: 825.33). The mass data therefore confirmed the
binding of metal ions with the ionophores.

Fluorescence study

The emission spectra of L1 and L2 were recorded in CH3CN
(2×10−5M) in the absence and presence of various metal ions
(10 equivalents), as mentioned for absorption spectroscopy,

Fig. 3 Emission spectra of L1 (a) and L2 (b) in CH3CN (2×10−5 M)
upon addition of 10 equivalents of different metal ions by exciting at
520 nm

Fig. 2 Colour changes of L1

and L2 (2×10
−5 M) in presence

of 10 equivalents of different
metal ion in CH3CN

Fig. 1 UV–vis spectra of L1 (a) and L2 (b) in CH3CN (2×10−5M) upon
addition of 10 equivalents of different metal ions
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upon excitation at 520 nm. The ionophores L1 and L2 did not
show any emission band, however after addition of metal ions
it exhibited a strong band at 550 nm for Cr3+ and Hg2+

(Fig. 3). For other metal ions, no emission band was observed.
This suggests that both Cr3+ and Hg2+ formed strong com-
plexes with the ionophores and these metal ions induced open-
ing of spirolactam ring making strongly fluorescent com-
plexes. The induction of delocalization in the xanthane moiety
of rhodamine gives strong emission [38]. Fluorescence titra-
tion experiments for both the ionophores were carried out with
Cr3+ and Hg2+ ions, details of which is given in the
BExperimental section^ and the spectral changes for L2 is
shown in Fig. 4 and the same for L1 is submitted as ESI
(Fig. S18). Binding constants were calculated using fluores-
cence titration data following the literature procedure
[39]. The plots log[((F0-F)/(F-F∞)] versus log[M] are
shown as the insets of the Figs. 4 and S18. The titration data

shows good linear fit (R2=0.94–0.97) for all the four
complexes and the binding constants thus obtained are
shown in Table 1. The data in Table 1 suggests moderate to
strong binding with both the metal ions and L2 binds stronger
than L1.

Lower detection limit was calculated on the basis of
measurable fluorescence enhancement on addition of
very low concentration of metal ions given in Table 1

Fig. 6 1H NMR spectral change for L1 in CD3CN-CDCl3 (x axis: δ ppm,
y: intensity) with incremental addition of Hg2+ (0.2 to 1.6 equivalents).

Fig. 5 Absorption spectral changes after addition of EDTA for L1 with
Hg2+ (a) and Cr3+ (b)

Table 1 Binding constants and lower detection limit from fluorescence
titration

Complex Binding constant (Ks) M
−1 Limit of detection (μM)

L1.Hg
2+ 7.91×104 4

L1.Cr
3+ 7.32×104 2

L2.Hg
2+ 1.26×105 2

L2.Cr
3+ 1.89×105 2

Fig. 4 Flurescenec spectral changesof L2 (2×10
−5 M) in CH3CN upon

incremental addition of Hg2+ (a) and Cr3+ (b)
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and Figs. S19 to S22. These detection limits are found
comparable to the molecular sensors reported in the literature
[40, 41].

Reversible demetalation study

Reversible binding of metal ions with the ionophores was
examined with the aid of EDTA. To the solution containing
ionophore and 10 molar equivalent of metal ion (Cr3+/Hg2+)
was added incremental amount of EDTA. The intensity of the
absorption band decreased proportional to the amount of
EDTA added and the band at 527 nm and also colour of the
solution disappeared upon addition of 500 molar equivalent of
EDTA (Figs. 5 and S23). EDTA is a well-known ligand for
complexation with most of the transition metal ions and
in this case demetalation of the metal-ionophore com-
plexes took place and consequently the absorption band
appeared after complexation with metal ion is again
disappeared. Further addition of metal ion gives reappearance
of the absorbance band and respective colours, which
shows reversibility.

1H NMR titration

The 1H NMR spectra of the ionophores with incremental ad-
dition of Hg2+ were recorded to ascertain the mode of

interaction with the metal ion. In case of Cr3+, no NMR study
was carried out due to its paramagnetic nature. Selected por-
tion of the NMR spectral changes with the addition of increas-
ing mount of Hg2+ for L1 is shown in Fig. 6 and the same for
L2 is submitted as ESI (Fig. S24). In the figure it may be noted
that upon addition of Hg2+ ions, significant changes in the
chemical shift for the Ha, Hb, Hc, and Hd protons (inset of
Fig. 6 for naming of protons) occurred. The change in chem-
ical shifts and broadening of the signals suggests involvement
of this unit for making interaction with metal ion. The
observation is consistent to the literature report for
spirolactum ring opening induced by metal ion, as
shown in Fig. 7 [42, 43]. The splitting and appearance
of new signals is probably due to existence of the Hg2+-
complex of the ionophore in different geometrical con-
formation in solution. Similar observation was also noted for
the complexation of L2.

Sensing studies in aqueous media with paper strips

Ionophores are not soluble in water; therefore a paper strip
method has been evolved to detect Cr3+ and Hg2+ in aqueous
media. In this method a strip of the Whatman filter paper no.
42 (pore size 2.5 μm) was immersed in a 2 mM dichlorometh-
ane solution of each of the ionophores for about 5 min. The
ionophore loaded paper strip was then allowed to air dry at

Fig. 7 Probable binding mode of
metal ions with the ionophores

Fig. 8 Colour changes observed forL1with the variation in concentration
of metal ions detected by paper strip method in aqueous media

Fig. 9 Colour change observed onmembrane surface forL1 after passing
aqueous solution containing metal ions (Hg2+/ Cr3+)
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room temperature. The dull white colored paper strip was then
dipped in the aqueous solution of Cr3+ and Hg2+ of various
known concentration (20, 50, 100, 200 and 300 ppm) for
about 5–7 min. These metal ion dipped paper strips were then
dried and their colors were compared to that of the strip with-
out dipping in metal ion and shown in Fig. 8 for L1 and
submitted as ESI for L2 (Fig. S25). For both of the metal ions,
color of the strips changed from dull white to orange and pink
for L1 and L2 respectively. In case of L1, intensity of the
orange color increases with the increase of the concentration
of metal ion (Fig. 8).

Sensing studies in aqueous media with filtration enrichment
technique using membrane filtration

This technique helps to detect metal ions at low concentration.
This technique involves formation of a concentrated layer of
ionophore onto the membrane so that detection of metal ion
passing through the layer of ionophores at low concentration
can be achieved. In a typical procedure, solutions of the ion-
ophores (1 mM, 2.5 mL) were prepared by dissolving 1.61
and 1.55 mg of L1 and L2, respectively in acetone and each of

these solutions was added to 122.5 mL of MQ water and the
mixture was stirred (850 rpm) at room temperature for 2 h.
This aqueous dispersion of ionophore (15 mL) was then
passed through the membrane (cellulose acetate, 25 mm) hav-
ing 0.2 μm porosity applying gentle pressure. The ionophore-
loaded membrane was then allowed to air-dry, fixed to filtra-
tion apparatus and the aqueous solution (15mL) containing 10
and 1 ppm of the metal ions (Hg2+/ Cr3+) was passed through
the membrane. After drying, the surface of the membrane
exhibited colour change from dull white to light pink, it is
detectable by bared eye for 1 ppm but prominent for 10 ppm
of metal ions (Figs. 9 and S26).

For surface study, atomic force microscopic images (AFM,
3D images) of the membrane with and without loading of
ionophores along with their height histograms were recoded
(Fig. 10). The images clearly show that the morphology, sur-
face roughness and the height histogram (Z axis) of the
ionophore-loaded membrane significantly changed compared
to unloaded membrane. The height histogram was increased
from 340 nm to 0.5 μm for both the ionophores. Surface
roughness also increased significantly with the incorporation
of both the ionophores.

Fig. 10 AFM images and their
corresponding histograms of the
membrane without and with
loading of ionophores
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Conclusions

Two new rhodamine-6G derivatives having anthracene and
biphenyl functionalities have been synthesized and character-
ized. Metal ion sensing property of these two ionphores has
been investigated with a wide range of alkali, alkaline earth
and transition metal ions in acetonitrile. Both the ionophores
exhibited high selectivity towards Hg2+ and Cr3+ with sharp
colour change from colourless to pink/reddish-pink. Detail
fluorescence and NMR studies revealed that spirolactum ring
opening occurred in presence of metal ions forming Hg2+/
Cr3+-complex. Binding constants were calculated from fluo-
rescence titration data and stoichiometries of the complexes
formed were determined from Job’s plot. Detection of Hg2+

and Cr3+ in aqueous media was carried out by colorimetric
method using paper strips and membrane filtration techniques.
Membrane filtration enrichment technique demonstrated de-
tection at lower concentration. AFM study for surface modi-
fication of membrane upon deposition of ionophores has also
been carried out.
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